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As emerging applications such as machine learning (ML) and big-data processing, convolution
neural network (CNN) is widely utilized on many image classification applications. However,
typical edge devices based on the von Neumann architecture have the processing elements
(PEs) separated from the memory devices, such that PEs must frequently access data via the
memory bus. Considerable read latency, high parasitic load on the data bus, and limited
bandwidth for memory access in movement of data from memory to PEs greatly increase the
overall latency and energy consumption which is known as the Von Neumann bottleneck. To
address the above issue, this project is expected to a forward-looking computing system
architecture and chip design method based on analog computing for mobile edge devices to
develop next-generation artificial intelligence chips. This computing system architecture
includes computing-in-memory (CIM), computing-in-sensor (CIS), neuromorphic computing
(NC). Computing-in-memory operations use SRAM and ReRAM as carriers, and in-sensor
operations will use CMOS image sensor as carriers. Our team plans to develop low-voltage,
low-power, and neural-like artificial intelligence based on analog operations of the chip. The
research results will bring considerable influence and impact to the market. The neuro-like
intelligent vision system chip of mobile devices has many applications in security monitoring,
automated robots, drone detection, and smart manufacturing. It’s expected to make
considerable contributions to academic research, national development, and economic markets.
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Fig 1. Von Neumann Bottleneck
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Fig 2: Proposed macro structure and data flow

Fig 3: Simulated performance

Shmoo: 8bIN-8bW-20bOUT, w/ pipeline operation

VDD (mV)
83 3 i85 8 8 §

tac (ns)
1E:05 (28nm, 384kb) AISSCC2018 [1] (7,1,4)
(28nm, 384kb) ©1SCC 2019 [3] (2,5,5)
1204 bx ©15CC 2019 3] (4,5,7)
(7nm, 4kb)
B e . 11.55x 1SSCC 2020 [4] (4,4,12)
2 o (28nm, 64kb) # 1SSCC 2020 [4] (4,8,16)
o #155CC 2020 (4] (8,8,20)
% 16402 A155CC 2020 (5] (4,4,4)
[ 01S5CC 2020 (6] (4,4,12)
LEN I 01S5CC 2020 (6] (8,8,20)
@ This work (4,4,12)
1E+00 - . L 4 @Thiswork (8,8,20)
0 20 40 60 80

IN-precision x W-precision

FoM = IN-precision x W-precision x Output-ratio x Output channel x EF/t,

Fig 4: Measurement results
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